Programming Guide - HidLibrary

Roman Reichel

Version 1.0

Programming Guide

HidLibrary
Overview
[image: image1.png]m

The HidLibrary provides basic access to USB-HID devices from the .NET-Environment. It consists of several classes, which provide an abstraction layer between the Platform API and the actual application.
Class Description

HidDataReceivedEventArgs

Public Properties

	Data Type
	Name
	Get
	Set

	Int
	Length Property
	Yes
	No

	HidReportType
	Type Property
	Yes
	No

	Byte
	[int] Property
	Yes
	No

Length Property

The number of bytes contained in the report.

Type Property

Constant value: HidReportType.Input
[int] Property

Provides indexed access to the report’s data bytes.

Public Events

None.

Public Methods

None.

HidReport

Public Properties

	Data Type
	Name
	Get
	Set

	Int
	Length Property
	Yes
	No

	HidReportType
	Type Property
	Yes
	No

	Byte[]
	Bytes Property
	Yes
	Yes

	Byte
	[int] Property
	Yes
	Yes

Length Property

The number of bytes contained in the report.

Type Property

Type of report. Value depends on actual subclass.
Bytes Property

An array of bytes containing the reports byte values.

[int] Property

Provides indexed access to the report’s data bytes.
Public Events

None.
Public Methods

None.
HidInReport

Internal Class. Implementation of HidReport for incoming reports.
HidOutReport

Internal Class. Implementation of HidReport for outgoing reports.
HidFeatureReport

Internal Class. Implementation of HidReport for feature reports (In/Out).
IHidDevice

Public Properties

	Data Type
	Name
	Get
	Set

	String
	VendorName
	Yes
	No

	String
	ProductName
	Yes
	No

	String
	SerialNumber
	Yes
	No

	Int
	VendorID
	Yes
	No

	Int
	ProductID
	Yes
	No

	Int
	Version
	Yes
	No

	Int
	NumInputBuffers
	Yes
	Yes

VendorName
The vendor string of the referenced device.

ProductName

The product string of the referenced device.

SerialNumber

The serial number string of the referenced device.

VendorID

The vendor ID of the referenced device.

ProductID

The product ID of the referenced device.

Version

The version number of the device.

NumInputBuffers

The number of input buffers used for communication with the device.
Public Events

	Data Type
	Name

	EventHandler<HidDataReceivedEventArgs>
	OnDataReceived

OnDataReceived

This event is fired whenever a report is received via the input pipe. The associated report data can be accessed through the HidDataReceivedEventArgs object.
Methods

	Return Type
	Name
	Parameter Types

	Int
	GetReportLength
	HidReportType

	Void
	WriteOutputReport
	HidReport

	HidReport
	ReadInputReport
	Void

	HidReport
	ReadFeatureReport
	Void

	Void
	WriteFeatureReport
	HidReport

	HidReport
	GetEmptyReport
	HidReportType

	String
	GetDeviceString
	Int

	Void
	StartInPipeThread
	Void

	Void
	StopInPipeThread
	Void

GetReportLength

Returns the number of bytes to be in a report of the given type.

Note: This must not be called from a Predicate<IHidDevice> function.

WriteOutputReport

Sends the given report to the device via the Control Pipe.

Note: This must not be called from a Predicate<IHidDevice> function.

ReadInputReport

Reads an Input Report from the Control Pipe.

Note: This must not be called from a Predicate<IHidDevice> function.

ReadFeatureReport

Reads a Feature Report (from the Control Pipe).

Note: This must not be called from a Predicate<IHidDevice> function.

WriteFeatureReport
Writes the given Feature Report to the Control Pipe.

Note: This must not be called from a Predicate<IHidDevice> function.

GetEmptyReport

Returns a new, empty (all data bytes initialized with 0) report of the given type.

Note: This must not be called from a Predicate<IHidDevice> function.

GetDeviceString

Returns the device string with the given index number.

StartInPipeThread

Starts the In-Pipe polling thread associated with the device.

Note: This must not be called from a Predicate<IHidDevice> function.

StopInPipeThread

Stops the In-Pipe polling thread associated with the device.

Note: This must not be called from a Predicate<IHidDevice> function.
HidReadThread

Private Class. Encapsulates the Input Pipe Polling, if applicable.

HidDevice

Private Class. Actual Implementation (of IHidDevice) of a single device.
HidControl

HidControl is the central object for device management. It handles a list of all Devices attached to the system and reacts on attach/detach events.

It can not be instantiated directly, instead the static function GetInstance has to be called.
Public Properties

None.
Public Events

	Data Type
	Name

	DeviceChangedEventHandler
	UnplugDevice

	DeviceChangedEventHandler
	PlugInDevice

UnplugDevice

This Event fires, when a USB device is unplugged from the system. If a device has been checked out using GetDeviceByPredicate before, the application should check if the device is still accessible and change its state accordingly.

PlugInDevice

This Event fires, when a new USB device is attached to the system. If a wanted device couldn’t be checked out before, the application should check if the device is accessible now and change its state accordingly.
Public Methods

	Return Type
	Name
	Parameter Types

	HidControl
	GetInstance
	Void

	IHidDevice
	GetDeviceByPredicate
	Predicate<IHidDevice>

	void
	GiveBackDevice
	IHidDevice

GetDeviceByPredicate

Returns the first IHidDevice on which the provided Predicate returns true.
A Predicate<IHidDevice> object can be instantiated using: new Predicate<IHidDevice>(function_name) , where function_name is the name of a function with the following signature: bool function_name(IHidDevice)

Note: If the given Predicate never yields true, null is returned.

GiveBackDevice

Stops the device’s polling thread and unvalidates the given IHidDevice (which is null afterwards).

Additional Data Types
HidReportType

An Enumeration of: Input, Output, Feature
DeviceChangedEventHandler

Delegate with following signature:

Void DeviceChangedEventHandler(object, EventArgs)

Usage Sample

Using HidLibrary;

Class Form1 //or any other object which inherits from UserControl

{

int myVendorID = 0x01;

int myProductID = 0x01;

HidControl MyControl = HidControl.GetInstance();

IHidDevice MyDevice;

Bool IsMyDevice(IHidDevice device)

{

return (device.VendorID == myVendorID) && (device.ProductID == myProductID);

}

void CheckoutMyDevice(object sender, EventArgs e)

{

if ((MyDevice = MyControl.GetDeviceByPredicate(new Predicate<IHidDevice>(IsMyDevice)) != null)

{

// Device is attached – Change GUI accordingly

MyDevice.OnDataReceived += new EventHandler<DataReceivedEventArgs>(MyDataReceivedHandler);

MyDevice.StartInPipeThread();

}

else

{

// Device is not attached – Change GUI accordingly

}

}

void MyDataReceivedEventHandler(object sender, DataReceivedEventArgs e)

{

// Process data

}

Form1

{

//Form initialisation code here

MyControl.UnplugDevice += new DeviceChangedEventHandler(CheckoutMyDevice);

MyControl.PlugInDevice += new DeviceChangedEventHandler(CheckoutMyDevice);

CheckoutMyDevice(null, null);

}

}[image: image2.png]

[image: image3.png]

[image: image4.png]

